Synthesis of 2-(Substituted Anilino) 4-(Substituted Phenyl)thiazoles

K. A. THAKAR *, D. D. GOSWAMI, and S. R. CHOUDHARI

Received November 18, 1976, from the Department of Chemistry, Marathwada University, Aurangabad-431002, India. Accepted for publication July 28, 1977.

Abstract \square 2-(Substituted anilino) 4-(substituted phenyl)thiazoles were synthesized by condensing 2-haloketones with substituted thioureas. The biological screening of some compounds indicated hypoglycemic and hyperglycemic activity.

Keyphrases □ Thiazoles, various substituted—synthesized, evaluated for hypoglycemic and hyperglycemic activity □ Hypoglycemic activity—various substituted thiazoles evaluated □ Hyperglycemic activity—various substituted thiazoles evaluated □ Structure-activity relationships—various substituted thiazoles evaluated for hypoglycemic and hyperglycemic activity

Five-membered heterocyclic compounds with two or three similar or dissimilar hetero atoms are established hypoglycemic and hyperglycemic agents. A literature survey revealed that sulfur-containing compounds are relatively better hypo/hyperglycemic agents (1, 2), but no definite correlation was observed between the nature of sulfur-containing functional groups and hypo/hyperglycemic activity. Important hypoglycemic agents contain N-substituted urea and thiourea residues. Thiazoles contain a thiourea moiety, and 2-anilinothiazoles contain an N-substituted thiourea moiety. Therefore, it was thought that 2-anilinothiazoles might have hypo/hyperglycemic activity. Therefore, variously substituted 2-anilinothiazoles were synthesized, and some were tested for hypo/hyperglycemic activity.

EXPERIMENTAL

A mixture of a haloketone (0.01 mole), substituted thiourea (0.01 mole), and alcohol (10 ml) was refluxed on a water bath for 1.5 hr. The crystalline hydrochloride obtained was filtered and washed with ether to remove the unreacted ketone. It was then crystallized from aqueous alcohol. The hydrochloride was boiled with excess dilute ammonium hydroxide. The solid thus obtained was filtered, washed with water, and crystallized from 95% alcohol; the yield was 60–70%.

RESULTS AND DISCUSSION

Chemistry-Thiazole synthesis, as described by Hantzsch and Weber

Scheme I

(3), was followed for the synthesis of Compounds 1–48 (Scheme I); it involved the condensation of 2-haloketones with thioureas. 2-Haloketones were readily available through the Friedel–Crafts reaction. All thioureas required were previously reported and were synthesized from commercially available substituted anilines by Kurzer's (4) procedure. The 2-haloketones and thioureas condensed smoothly in ethanol to form 2-(substituted anilino) 4-(substituted phenyl)thiazole hydrochlorides which, when made basic with ammonia, yielded Compounds 1–48.

The formation of thiazole derivatives was determined by their sharp melting points, elemental analyses, and IR spectra (Table I).

Secondary amines show only a single NH-stretching band in the 3500-3200-cm⁻¹ range (5). Russell and Thompson (6) extensively studied the IR spectra of secondary amines and examined both the intensity and frequency of the NH band in a wide range of compounds. They reported

Table	I-	-Phy	sical	Consta	nts. E	lemental	Analyses	. and IF	l Spectra	il Data	of 2-(Substitu	uted A	nilino) 4-(Substitut	ed Phen	vl)thiaz	oles
	_														/ - \			5 - ,	

			Melting	Carb	on, %	Hydro	ogen, %	IR Frequ	iencies, cm ⁻¹
Compound	R ₁ and R ₂	R ₃	Pointa	Calc.	Found	Calc.	Found	Amino Group	Thiazole Ring
1	3',4'-Dichloro	Н	158° (175°)	56.08	56.23	3.11	3.27	3590, 1620	1570, 1425, 1370, 1030, 820
2	3′,4′-Dichloro	2″-Chloro	115° (206°)	50.64	51.01	2.53	2.99	3230, 1590	1500, 1425, 1385, 1030, 830
3	3',4'-Dichloro	3"-Chloro	105° (200°)	50.64	49.95	2.53	2.75	<u> </u>	
4	3',4'-Dichloro	4"-Chloro	144° (203°)	50.64	50.80	2.53	2.35	3320, 1610	1560, 1440, 1400, 1026, 840
5	3',4'-Dichloro	3"-Bromo	103° (198°)	45.00	44.85	2.25	2.52	—	_
6	3',4'-Dichloro	4"-Bromo	150° (205°)	45.00	44.34	2.25	2.41	3380, 1590	1550, 1435, 1390, 1030, 800
7	3',4'-Dichloro	2"-Hydroxy	219° (254°)	53.42	53.01	2.96	2.27	3320, 1620	1560, 1430, 1370, 1020, 820
8	3',4'-Dichloro	3"-Hydroxy	185° (220°)	53.42	52.92	2.96	2.52	3200, 1600	1560, 1425, 1390, 1030, 800

(continued)

Table	I-Cor	ntinued
-------	-------	---------

			Melting	Cart	on, %	Hydro	ogen, %	IR Freq	uencies, cm ⁻¹
Compoun	d R_1 and R_2	<u>R₃</u>	Point ^a	Calc.	Found	Calc.	Found	Amino Group	Thiazole Ring
9	3',4'-Dichloro	4"-Hydroxy	114° (232°)	53.42	53. 9 0	2.96	3.06	3500, 1610	1570, 1420, 1395, 1030, 820
10	3',4'-Dichloro	2"-Methoxy	132° (180°)	54.70	54.51	3.47	3.85	3370, 1600	1540, 1440, 1380,
11	3',4'-Dichloro	2"-Pyridyl	175°	52.57	52.85	2.79	2.32	3400, 1610	1020, 830
12	2',5'-Dichloro	Н	(243°) 120°	56.08	56.15	3.11	3.58	3571, 1610	1567, 1430, 1370,
13	2',5'-Dichloro	2"-Chloro	(190°) 120°	50.64	50.82	2.53	3.11	1595	1040, 815 1555, 1464, 1380,
14	2',5'-Dichloro	3"-Chloro	(206°) 161°	50.64	50.99	2.53	2.82	3485, 1600	1045, 815 1560, 1430, 1370,
15	2',5'-Dichloro	4"-Chloro	(202°) 141°	50.64	50.41	2.53	3.06	3545, 1618	1006, 815 1580, 1450, 1370,
16	2',5'-Dichloro	3"-Bromo	(195°) 158°	45.00	44.94	2.25	2.52	1600	1042, 820 1560, 1455, 1380,
17	2',5'-Dichloro	4"-Bromo	(205°) 141°	45.00	45.26	2.25	3.02	1616	1045, 820 1576, 1450, 1370,
18	2',5'-Dichloro	3″-Iodo	(188°) 157°	40.27	40.71	2.01	2.24	1590	1040, 815 1540, 1450, 1370,
19	2',5'-Dichloro	2"-Hydroxy	(210°) 210°	53.42	53.54	2.96	3.34	3340, 1620	1040, 815 1570, 1450, 1370,
20	2',5'-Dichloro	3"-Hydroxy	(236°) 158°	53.42	53.58	2.96	2.84	3450, 1618	1040, 820 1570, 1425, 1370,
21	2',5'-Dichloro	4"-Hydroxy	(230°) 130°	53.42	52.57	2.96	2.96	3200, 1600	1035, 802 1570, 1420, 1370,
22	2′,5′-Dichloro	2"-Methoxy	(225°) 96°	54.70	54.40	3.47	3.70	3260, 1600	1030, 820 1570, 1420, 1370,
23	2',5'-Dichloro	3"-Methoxy	(185°) 141°	54.70	54.33	3.47	4.14	3320, 1630	1030, 820 1570, 1420, 1370,
24	2',5'-Dichloro	2″-Methyl	(144°) 142°	59.07	59.01	3.69	3.72	3345, 1590	1040, 825 1560, 1430, 1375,
25	2',5'-Dichloro	2"-Pyridyl	(208°) 155°	52.57	52.25	2.79	4.56	3360, 1615	1040, 810 1550, 1460, 1380,
26	2'-Chloro-5'-methyl	Н	(258°) 194°	63.90	63.72	4.32	4.15	1590	1040, 810 1580, 1450, 1380,
27	2'-Chloro-5'-methyl	2"-Chloro	(195°) 80°	57.32	57.52	3.58	3.28		1040, 800
28	2'-Chloro-5'-methyl	3"-Chloro	(198°) 110°	57.32	57.01	3.58	3.72	3200, 1590	1550, 1415, 1370,
29	2'-Chloro-5'-methyl	4"-Chloro	(205°) 176°	57.32	56.79	3.58	4.20	3200, 1590	1040, 800 1560, 1440, 1400,
30	2'-Chloro-5'-methyl	3"-Bromo	(201°) 137°	48.98	48.57	3.26	3.03		1020, 820
31	2'-Chloro-5'-methyl	4"-Bromo	(206°) 183°	48.98	48.70	3.26	2.80	3050, 1613	1570, 1445, 1340,
32	2'-Chloro-5'-methyl	2"-Hydroxy	(202°) 168°	60.66	59.95	4.10	4.25	3350, 1625	1575, 1475, 1385,
33	2'-Chloro-5'-methyl	3"-Hydroxy	(200°) 165°	60.66	60.43	4.10	3.89	3340, 1620	1040, 815 1565, 1440, 1380,
34	2'-Chloro-5'-methyl	4"-Hydroxy	(210°) 135°	60.66	59.87	4.10	3.76	3500, 1650	1030, 810 1550, 1424, 1380,
35	2'-Chloro-5'-methyl	2"-Methoxy	(248°) 70°	60.29	60.01	4.71	4.52	_	1042, 815
36	2'-Chloro-5'-methyl	4"-Methoxy	(190°) 96°	60.29	59.95	4.71	5.03	-	
37	2'-Chloro-5'-methyl	2"-Methyl	(163°) 133°	64.86	64.92	4.77	4.23	3360, 1600	1560, 1440, 1380,
38	2'-Chloro-5'-methyl	4″-Methyl	(198°) 187°	64.86	64.63	4.77	4.90	1590	1030, 820 1560, 1440, 1395,
39	2'-Chloro-5'-methyl	2"-Pyridyl	(210°) 142°	59.70	59.93	3.98	4.23		1060, 815
40	2'-Bromo-5'-methyl	Н	(220°) 140°	55.65	55.46	3.75	4.50	3400, 1618	1570, 1450, 1380,
41	2'-Bromo-5'-methyl	2"-Chloro	(195°) 142°	50.87	50.52	3.16	3.57	-	
42	2'-Bromo-5'-methyl	4"-Chloro	(196°) 189°	50.87	51.29	3.16	3.46	1600	1570, 1450, 1385,
43	2'-Bromo-5'-methyl	3"-Bromo	(184°) 137°	45.28	45.00	2.83	2.62	3540, 1580	1060, 1550 , 1440 , 1360 ,
44	2'-Bromo-5'-methyl	2"-Hydroxy	(210°) 158°	53.19	53.47	3.60	3.32	3420, 1605	1040, 810 1570, 1465, 1380,
45	2'-Bromo-5'-methyl	4"-Hydroxy	(185°) 205°	53.19	52.95	3.60	4.10	3500, 1640	1065, 805 1565, 1410, 1380,
46	2'-Bromo-5'-methyl	2"-Methoxy	(220°) 80°	54.41	53.69	4.00	5.01	1590	1065, 810 1560, 1420, 1380, 1045, 000
47	2'-Bromo-5'-methyl	2"-Methyl	(211°) 145°	56.82	57.55	4.17	3.87	3160, 1600	1045, 820 1550, 1420, 1380,
48	2'-Bromo-5'-methyl	2"-Pyridyl	(192°) 143° (205°)	52.02	52.60	3.46	4.08	1615	1030, 820 1550, 1420, 1380, 810

 a Figures in parentheses represent the melting points of the hydrochlorides.

Table II—Data	of Hypo/Hyp	erglycemic A	Activity of 2-
(Substituted An	nilino) 4-(Sub	stituted Phe	nyl)thiazoles

	Increase (of Blood by C			
Compound	1 hr	2 hr	4 hr	Results
2	-4	-4	+2	Inactive
3	-5	-17	-21	Hypoglycemic
4	+15	-4	-7	Inactive
6	-9	-14	-14	Hypoglycemic
7	-11	-9	-11	Inactive
9	+15	+5	+3	Hyperglycemic
12	+11	-3	-4	Hyperglycemic
14	+4	-7	-12	Hypoglycemic
15	+4	-16	-12	Hypoglycemic
17	+4	-12	-14	Hypoglycemic
19	-2	0	-5	Inactive
20	+11	+4	+2	Hyperglycemic
21	-3	-2	-2	Hypoglycemic
28	-10	-17	-12	Hypoglycemic
29	+2	-5	-2	Inactive
31	-2	+2	+2	Inactive
32	+5	-2	+3	Inactive
34	-13	-13	-9	Inactive
42	-3	-12	-9	Hypoglycemic

 a Results are expressed as the percentage difference in milligrams between the mean change in control and treated groups after a drug dose of 150 mg/kg.

that the frequency falls in the 3350-3310-cm⁻¹ range with low intensity in aliphatic secondary amines. In alkylaryl amines, the frequency rises to nearly 3450 cm⁻¹ with a higher intensity. The absorption frequencies of diaryl secondary amines do not seem to have been studied in detail. Substituted 2-anilinothiazoles are secondary amines of this type. The NH-stretching frequencies in these compounds lie in the 3550-3320-cm⁻¹ range.

The bands due to the NH deformation in secondary aromatic amines are confused to some extent because of C=C ring stretching absorption in the same region. The strong band in the 1640–1600-cm⁻¹ region showed the characteristics of anilino structures in general.

The characteristic thiazole ring vibrations have been assigned as 1570-1540, 1470-1420, 1400-1370, and 1035-1025 cm⁻¹ (7-9). The bands in the 800-700-cm⁻¹ region at the low frequency region are associated with out-of-plane bending vibrations of the CH-stretching of the thiazole ring. The presence of these bands in the IR spectra of the compounds under study confirmed the presence of the thiazole ring.

Hypo/Hyperglycemic Activity—The activity was tested in normal rats (average weight of 200 g). They were divided into groups of seven and fed orally with test compounds (150 mg/kg) as solution in 5% gum tragacanth. Seven rats were kept as controls. Blood samples were drawn each hour from tail veins for glucose measurements. Changes in blood glucose content of the tested rats were compared with those of the controls at 1, 2, 4, and 48 hr in each case. The data of the *in vivo* activity tests are given in Table II.

A compound is considered hypoglycemically active if it produces a 30% decrease in blood glucose and hyperglycemically active if it produces a 10% increase in blood glucose:

$$\% \text{ change} = \frac{\Delta T - \Delta C}{\text{control glucose value at that hour}}$$
(Eq. 1)

where ΔT is the change of blood glucose from zero time for treated groups and ΔC is the change of blood glucose from zero time for control groups.

REFERENCES

(1) M. Y. Mhasalkar, M. H. Shah, S. T. Nikam, K. G. Anantnarayan, and C. V. Deliwala, J. Med. Chem., 14, 260 (1971).

(2) J. C. Krantz and C. J. Carr, "Pharmacologic Principles of Medical Practice," 6th ed., Williams & Wilkins, Baltimore, Md., 1967, pp. 865-875.

(3) A. Hantzsch and J. H. Weber, Chem. Ber., 20, 3118, 3336 (1887); 21, 938, 941 (1888).

(4) F. Kurzer, in "Organic Syntheses," coll. vol. IV, N. Rabjohn, Ed., Wiley, New York, N.Y., 1963, p. 180.

(5) L. J. Bellamy, "The Infrared Spectra of Complex Molecules" Wiley, New York, N.Y., 1959, p. 248.

(6) R. A. Russell and W. H. Thompson, J. Chem. Soc., 1955, 483.

(7) H. M. Randall, R. G. Fowler, N. Fusion, and J. R. Dangle, "Infrared Determination of Organic Structures," Van Nostrand, New York, N.Y., 1949.

(8) A. Taurins, J. G. E. Fenyes, and R. N. Jones, Can. J. Chem., 35, 423 (1957).

(9) A. R. Kartritzky, Q. Rev., 13, 353 (1959).

ACKNOWLEDGMENTS

The authors thank Dr. Charles E. Berkoff of Smith Kline and French Laboratories, Philadelphia, Pa., for extending screening facilities for the compounds and also the authorities of Marathwada University for awarding a Junior Research Fellowship to Mr. S. R. Choudhari.